RCS Estimation of Generic Airplane Scale Model

This paper presents modeling and simulation results of monostatic Radar Cross Section (RCS) for scaled model of generic airplane in WIPL-D software. We present simulation times, memory requirements and hardware used for two types of solvers: CPU and GPU.

The airplane is modeled from the sketch in WIPL-D Pro CAD which provides simple and fast solid modeling of complex geometries using built-in primitives, Boolean operations and other features. Length of the model is 310 mm. The simulation was performed in WIPL-D Pro at frequency of 30 GHz.

The model is simulated using both CPU and GPU solvers. CPU solution has been prominent feature of WIPL-D software for many years, but last several years the GPU technology has been flagship product for large scale examples. The PC used for simulation is a regular configuration, rather than an expensive workstation, with simulation time measured in minutes.

View PDF

Trees, Foliage and Complex Sceneries

Scattering of EM waves from trees and foliage as well as the propagation of EM waves in the presence of forests plays an important role in many civil and military applications (such as Foliage Penetrating Radar for detecting potential targets in the forest).

Computationally efficient modeling of trees and foliage can be done with metallic wires for branches and metallic plates for leaves with distributed loadings over them. The approach is valid up to approximately 150 MHz (considering that the tree trunk has diameter less than about 2 ft / 60 cm). The number of unknowns needed for the simulation is reduced approximately 100 times! Only ~100 unknowns are needed for the modeling of a single tree.

On a standard desktop, the simulation of the entire forest with 100 randomly placed trees and additional objects lasts under a minute. The presented approach opens the possibility for a rapid full  3D EM simulation of complex sceneries involving trees, foliage, and potential targets inside forests.

View PDF