

Efficient Usage of CPU and GPU Hardware Resources

This application note presents how is the efficiency of CPU and
GPU parallelization in WIPL-D software affected with the
electrical size of a problem. In all of the simulations carried out
to complete this application note, CPU matrix fill-in and GPU
matrix inversion were used.

Introduction

In WIPL-D software, a simulation has two main phases, the
matrix fill-in followed with the matrix inversion. For electrically
small problems, where the MoM matrix has up to a few
thousands of unknown coefficients (unknowns), the fill-in time
is dominant. For electrically larger problems, the matrix
inversion time becomes a more significant portion of the total
simulation time. The matrix fill-in time raises as O(N2), where N
is the number of unknowns. In general, matrix inversion time
raises as O(N3).

Since the simulation time for electrically small EM problems is
usually not critical, we consider WIPL-D capabilities on CPU and
GPU platforms for electrically moderate or large solutions.

The matrix fill-in time depends on several factors, such as shape
of the mesh plates, the relative position of the plates, orders of
current approximation used, etc. For this reason, two different
problems are simulated: generic model of an airplane (with a
varying shape of the mesh elements) and metallic cubes (where
all mesh elements are the identical squares).

Unlike matrix fill-in time, the matrix inversion time depends only
on the number of unknown coefficients.

In the first section of the application note, we address the
efficiency of WIPL-D matrix fill-in for modern multicore CPUs. In
the second part, we focus on the importance of using GPUs for
speeding up the matrix inversion phase. In the last part, it will be
shown that the matrix inversion phase becomes dominant as
number of unknowns increases, and the best strategy for solving
electrically large problems is suggested.

Efficient Matrix Fill-in on Multi-Core CPUs

The most important aspect of the matrix fill-in is to exploit the
advantage of modern CPUs, which all have multi-core
capabilities. Having a quad core CPU has become a standard for
the desktop and laptop PCs, and is even emerging as the
standard for various mobile devices. WIPL-D has followed this
trend acknowledging that the modern desktop CPUs could be
available with 6, 8, 10, 12, 16 or more cores. The modern
motherboards support more than one multi core CPUs coming
with an affordable desktop PC or a small workstation (with
mostly 2 CPUs, but also 3, 4…). In that sense, it is not uncommon
to encounter a desktop PCs with 20, 24 or 32 cores. With the

multi-threading applied, it turns into 40, 48 or 64 threads,
respectively.

WIPL-D kernel fully exploits such a huge advantage of modern
PCs with highly efficient matrix fill-in. In the following figures,
we will illustrate the speed-up and parallelization efficiency
achieved by using more than standard 4 cores, when generic
model of an airplane is simulated. On the PC with 24 physical
cores, we run WIPL-D simulation with WIPL-D kernel set to use
4, 8 and all 48 threads.

Figure 1. Improving the simulation time for matrix fill -in on

multicore PC when the matrix fill -in is done by using 4, 8
and 48 threads

It can be seen, in the diagram shown in Figure 1, that matrix fill-
in time is practically halved when 8 threads is used instead of 4,
regardless the number of unknowns. When all of the threads are
used (24 cores multiplied by 2 with Intel multi-threading), the
simulation time is reduced almost 6 times.

Machine used for simulations is 2xCPU Intel(R) Xeon(R) CPU E5-
2650 v4 @ 2.20 GHz.

Multi-Core CPUs for Multifrequency
Problems

As the previous section indicates, for electrically small problems
the efficiency of the parallelization on multicore (or multithread)
CPUs decreases as the number of threads increases. Typically,
such a problem is simulated in a frequency band i.e. at several
frequencies. For such a case, a specific feature called “frequency
parallel run” can be used with WIPL-D. The underlying idea is
very simple – in fact a multi-frequency problem is automatically
subdivided into a set of single frequency problems, which are
simulated in parallel using a number of processes, as defined by
a user. Each simulation uses its own set of CPU threads, which is
equal to a total number of threads divided by a number of
concurrent simulations. After the simulations of all subprojects

are finished, output files are automatically merged into a single
output file.

We can illustrate this on a simple example. Let us imagine we
need to simulate an antenna over a wide frequency band at 48
points. If an affordable workstation with two 12-core CPUs (Intel
hyperthreading enabled) is available for simulation, this actually
means that all 48 threads are available for simulation. If one
frequency at a time is executed on all 48 threads, the efficiency
will not reach a maximum of 100%. However, the frequency
parallel run allows us to run 2 frequency points in parallel, each
at 24 thread, or 4 frequency points each at 12 threads etc.

As an illustrative example a relatively simple but quite
demanding from the simulation perspective direction-finding
antenna can be considered. This antenna requires a low
frequency simulation, which typically requires computations in
double precision.

Figure 2. ADF antenna – WIPL-D model

The antenna is next attached to a CAD realistic model of a 19m
long helicopter, in the frequency range 190 - 560 kHz. The DF
algorithm often requires larger number of frequency points. The
simulation involves 10,500 quad mesh elements and only 22,000
unknowns. The matrix fill-in time is dominant, but the
multithreading is also important for the matrix inversion.

Figure 3. ADF antenna mounted to the helicopter

The simulation is carried out at 48 frequency points, split in
different configuration (one frequency at time at 48 thread, two
frequencies at time each at 24 threads, etc.). The simulation
times per frequency are listed in Table 1. The configuration used
is:

Intel® Xeon® Gold 5118 CPU @ 2.30 GHz (2 processors) with
192 GB RAM.

 Table 1. Simulation times for the different frequency
parallel run settings.

Number of frequency points in
parallel t [s]

1 161

2 136.5

4 122.5

8 119.5

16 119.5

24 117.5

48 No sufficient RAM

We can conclude that the multithreading efficiency is not 100%
when a single frequency project is executed at such a large
number of threads (48). However, even if the project needs to
be run at as little as two frequency points, a much better
efficiency is achieved (parallel run of two frequency point, each
at 24 threads). The efficiency practically reaches 100% even with
4 frequency points and remains perfect if the number of
frequency points is further increased. The maximum efficiency
should be reached when 48 frequency points are executed in
parallel, each at single thread. However, such simulation could
not be performed due to the RAM limitation.

Efficiency of GPU Solver

WIPL-D GPU Solver is an add-on tool that exploits high
computation power of nVIDIA CUDA™-enabled GPUs to
significantly decrease EM simulation time. Acceleration by an
order of magnitude can be achieved when compared to a CPU
multi-threaded solution.

The sophisticated parallelization algorithm results in a highly
efficient utilization of an arbitrary number of GPUs. Supported
GPUs are nVIDIA’s CUDA-enabled GPUs (GeForce, Tesla or
Quadro series) with compute capability 2.0 and higher.

The greatest speed-up is achieved in the matrix inversion phase
of simulation.

GPU acceleration versus number of unknown coefficients is
given for two hardware configurations: a desktop PC equipped
with single GPU, and a server equipped with 4 GPUs. In all the
simulations used for the following figures, CPU matrix fill-in is
used.

The graphs below illustrate the reduction of total simulation
time, when GPU inversion replaces CPU inversion, on the
configuration with 1 GPU.

Figure 4. Improving the simulation times on standard

desktop PC when the matrix inversion is done at single
GPU card (nVIDIA GeForce GTX 1080)

The desktop machine configuration is as follows: Intel® Core™
i7-7700 @ 3.60 GHz, 64 GB of RAM, one nVIDIA GeForce GTX
1080 GPU. GPU acceleration increases with increasing number
of unknown coefficients. For 80,000 unknowns, acceleration is
~10 times. Number of unknowns where the GPU solution
becomes faster than the CPU solution is ~5,500. Nevertheless,
significant acceleration is not noticeable for less than 10,000
unknowns.

Simulation time (when CPU fill-in and GPU inversion are used)
for a problem with 10,000 unknowns is 5 seconds, and for a
problem with 80,000 unknowns it is 6.8 min.

The simulation times for problems requiring over 80,000
unknowns are less practical at standard desktop PC, even when
equipped with a GPU card. Electrically larger problems are more
efficiently solved at advanced hardware configurations,
involving more CPU cores and multiple GPU cards. The server
configuration is as follows: Intel Xeon CPU E5-2660 v2 @2.2 GHz
(2 processors), 256 GB of RAM, four nVIDIA GeForce GTX 1080
Ti GPUs and 7 SATA HDDs configured in RAID-0 configuration.

GPU acceleration of total simulation time, for the problems with
80,000 to 200,000 unknowns is shown in Figure 5. Acceleration
increases with increase of the number of unknowns.

An abrupt change in acceleration is achieved when the number
of unknowns increases from 180,000 to 200,000. The reason for
such a behavior is the switching of the matrix inversion to
out-of-core. In the case of GPU Solver HDDs I/O operations are
performed in parallel with GPU calculations, which provides
additional acceleration when compared to CPU calculations.

A problem with 100,000 unknowns is solved in 6.4 min, while
the simulation time for 200,000 unknowns is 46.5 min.

Figure 5. Improving the simulation times on the advanced
hardware configuration when the matrix inversion is done

at four GPU cards (nVIDIA GeForce GTX 1080)

The next sections will focus on the application of highly efficient
GPU solver for the two typical EM problems.

Airplane Model

The model of generic airplane (Fig. 6), is meshed in WIPL-D Pro
CAD tool. The airplane was scaled in such a way to have
approximately 20, 50, 100, 150 and 200 thousand of unknowns.

Figure 6. Generic airplane model in WIPL-D Pro CAD.

Fig 7 displays mesh of the generic airplane for 150,000
unknowns.

Figure 7. Meshed generic airplane for 150,000 unknowns.

Regular Cubes Model

Cubes presents one of the simplest and widely used canonical
structures for EM simulation. All mesh elements are of square
shape.

Fig. 8 shows cubes for 20,000 unknowns. Models of 50, 100, 150
and 200 thousand are obtained using copy manipulation.

Figure 8. Cubes for 20,000 unknowns.

Airplane and Cubes Simulations

Machine used for simulations is 2xCPU Intel(R) Xeon(R) CPU
E5-2650 v4 @ 2.20 GHz, 256 GB of RAM, 7 SATA hard disks
connected in RAID-0 configuration, and 4xGPU GTX1080 TI.

In order to take full advantage of WIPL-D high order basis
functions (HOBFs), CPU parallelization is used for matrix fill-in
and GPU solver for the matrix inversion.

Simulation times of generic airplane and cube problem are listed
in Table 2 and Table 3, respectively. The data from the tables
were used to graphically present the ratio of the matrix fill-in and
the matrix inversion time versus a number of unknowns. For the
generic airplane, the ratios are presented in Fig. 9, and for the
cubes, in Fig. 10.

Table 2. Simulation times of generic airplane model.

Number of
Unknowns

Fill-In Time on
CPU [s]

Inversion Time on
GPU [s]

Total
Simulation

Time [s]

~20,000 9.4 (35%) 16.8 (63%) 26.9

~50,000 25.6 (23%) 83.6 (75%) 111.1

~100,000 92.0 (22%) 324.2 (77%) 421.6

~150,000 199.2 (18%) 870.9 (81%) 1078.4

~200,000 296.1 (10%) 2,526.0 (83%) 3,039.4

Table 3. Simulation times of cube model.

Number of
Unknowns

Fill-In Time on
CPU [s]

Inversion Time on
GPU [s]

Total
Simulation

Time [s]

~20,000 4.0 (20%) 15.7 (78 %) 20.2

~50,000 20.6 (17 %) 99.8 (82%) 122.0

~100,000 69.5 (18%) 322.4 (81 %) 396.4

~150,000 196.2 (14 %) 1,026.2 (75 %) 1,362.4

~200,000 320.0 (10 %) 2,553.1 (83 %) 3,080.4

Figure 9. Matrix fill-in – total simulation time ratio (red
line) and matrix inversion – total simulation time ratio

(blue line) for generic airplane.

Figure 10. Matrix fill-in – total simulation time ratio (red

line) and matrix inversion – total simulation time ratio
(blue line) for cube models

It can be concluded from the figures that for electrically large
problems, above 50,000 of unknowns, the matrix inversion time
requires 80-90% of the total simulation time. The total
simulation time is most efficiently reduced by decreasing the
most dominant component: the matrix inversion time. That is
achieved by using an arbitrary number of GPU cards in the
inversion process.

For the simulation of generic airplane with 200,000 unknowns,
as well as for the cubes with 150,000 and 200,000 unknowns,
the solution is obtained by using the out-of-core solver. The
simulation times are bolded in the tables.

It is important to notice that the time required for a matrix
inversion for the problem with ~150,000 unknowns, when it is
performed in the in-core mode, and out-of-core mode are rather
similar. The in-core computations are referred to the airplane
model, requiring slightly less than 150,000 unknowns, while the
out-of-core computations are referred to the cube model, which
requires slightly more than 150,000 unknowns. In the case of
out-of-core simulation the total simulation time has been
increased mostly by the time used to write the matrix to a hard
disk.

While performing the matrix fill-in, the CPU usage is just under
the 100%. However, during the matrix inversion stage CPU is
used only to synchronize all data transfers between CPU RAM
and GPUs VRAM, and CPU RAM and HDDs, and CPU usage is
accordingly very low.

Fig. 11 shows CPU usage during the simulation process, on the
example of generic airplane model which requires 100,000
unknowns.

Conclusion

Highly efficient CPU and GPU parallelization of WIPL-D
numerical kernel is presented in the application note. The matrix
fill-in process is fully CPU parallelized, while matrix inversion is
fully GPU parallelized. Total simulation time decreases so that a
problem with 200,000 unknowns can be simulated in less than
one hour.

Figure 11. CPU usage during the simulation of generic airplane problem with 100,000 unknowns.

