
 

 

Efficient Usage of CPU and GPU Hardware Resources

This application note presents how is the efficiency of CPU and 
GPU parallelization in WIPL-D software affected with the 
electrical size of a problem. In all of the simulations carried out 
to complete this application note, CPU matrix fill-in and GPU 
matrix inversion were used.  

Introduction 

In WIPL-D software, a simulation has two main phases, the 
matrix fill-in followed with the matrix inversion. For electrically 
small problems, where the MoM matrix has up to a few 
thousands of unknown coefficients (unknowns), the fill-in time 
is dominant. For electrically larger problems, the matrix 
inversion time becomes a more significant portion of the total 
simulation time. The matrix fill-in time raises as O(N2), where N 
is the number of unknowns. In general, matrix inversion time 
raises as O(N3). 

Since the simulation time for electrically small EM problems is 
usually not critical, we consider WIPL-D capabilities on CPU and 
GPU platforms for electrically moderate or large solutions. 

The matrix fill-in time depends on several factors, such as shape 
of the mesh plates, the relative position of the plates, orders of 
current approximation used, etc. For this reason, two different 
problems are simulated: generic model of an airplane (with a 
varying shape of the mesh elements) and metallic cubes (where 
all mesh elements are the identical squares). 

Unlike matrix fill-in time, the matrix inversion time depends only 
on the number of unknown coefficients.  

In the first section of the application note, we address the 
efficiency of WIPL-D matrix fill-in for modern multicore CPUs. In 
the second part, we focus on the importance of using GPUs for 
speeding up the matrix inversion phase. In the last part, it will be 
shown that the matrix inversion phase becomes dominant as 
number of unknowns increases, and the best strategy for solving 
electrically large problems is suggested. 

Efficient Matrix Fill-in on Multi-Core CPUs 

The most important aspect of the matrix fill-in is to exploit the 
advantage of modern CPUs, which all have multi-core 
capabilities. Having a quad core CPU has become a standard for 
the desktop and laptop PCs, and is even emerging as the 
standard for various mobile devices. WIPL-D has followed this 
trend acknowledging that the modern desktop CPUs could be 
available with 6, 8, 10, 12, 16 or more cores. The modern 
motherboards support more than one multi core CPUs coming 
with an affordable desktop PC or a small workstation (with 
mostly 2 CPUs, but also 3, 4…). In that sense, it is not uncommon 
to encounter a desktop PCs with 20, 24 or 32 cores. With the 

multi-threading applied, it turns into 40, 48 or 64 threads, 
respectively. 

WIPL-D kernel fully exploits such a huge advantage of modern 
PCs with highly efficient matrix fill-in. In the following figures, 
we will illustrate the speed-up and parallelization efficiency 
achieved by using more than standard 4 cores, when generic 
model of an airplane is simulated. On the PC with 24 physical 
cores, we run WIPL-D simulation with WIPL-D kernel set to use 
4, 8 and all 48 threads.  

 
Figure 1. Improving the simulation time for matrix fill -in on 

multicore PC when the matrix fill -in is done by using 4, 8 
and 48 threads 

It can be seen, in the diagram shown in Figure 1, that matrix fill-
in time is practically halved when 8 threads is used instead of 4, 
regardless the number of unknowns. When all of the threads are 
used (24 cores multiplied by 2 with Intel multi-threading), the 
simulation time is reduced almost 6 times.  

Machine used for simulations is 2xCPU Intel(R) Xeon(R) CPU E5-
2650 v4 @ 2.20 GHz. 

Multi-Core CPUs for Multifrequency 
Problems 

As the previous section indicates, for electrically small problems 
the efficiency of the parallelization on multicore (or multithread) 
CPUs decreases as the number of threads increases. Typically, 
such a problem is simulated in a frequency band i.e. at several 
frequencies. For such a case, a specific feature called “frequency 
parallel run” can be used with WIPL-D. The underlying idea is 
very simple – in fact a multi-frequency problem is automatically 
subdivided into a set of single frequency problems, which are 
simulated in parallel using a number of processes, as defined by 
a user. Each simulation uses its own set of CPU threads, which is 
equal to a total number of threads divided by a number of 
concurrent simulations. After the simulations of all subprojects 



 

 

are finished, output files are automatically merged into a single 
output file.  

We can illustrate this on a simple example. Let us imagine we 
need to simulate an antenna over a wide frequency band at 48 
points. If an affordable workstation with two 12-core CPUs (Intel 
hyperthreading enabled) is available for simulation, this actually 
means that all 48 threads are available for simulation. If one 
frequency at a time is executed on all 48 threads, the efficiency 
will not reach a maximum of 100%. However, the frequency 
parallel run allows us to run 2 frequency points in parallel, each 
at 24 thread, or 4 frequency points each at 12 threads etc. 

As an illustrative example a relatively simple but quite 
demanding from the simulation perspective direction-finding 
antenna can be considered. This antenna requires a low 
frequency simulation, which typically requires computations in 
double precision. 

 
Figure 2. ADF antenna – WIPL-D model 

The antenna is next attached to a CAD realistic model of a 19m 
long helicopter, in the frequency range 190 - 560 kHz. The DF 
algorithm often requires larger number of frequency points. The 
simulation involves 10,500 quad mesh elements and only 22,000 
unknowns. The matrix fill-in time is dominant, but the 
multithreading is also important for the matrix inversion. 

 
Figure 3. ADF antenna mounted to the helicopter  

The simulation is carried out at 48 frequency points, split in 
different configuration (one frequency at time at 48 thread, two 
frequencies at time each at 24 threads, etc.). The simulation 
times per frequency are listed in Table 1. The configuration used 
is: 

Intel® Xeon® Gold 5118 CPU @ 2.30 GHz (2 processors) with 
192 GB RAM. 

 Table 1. Simulation times for the different frequency 
parallel run settings. 

Number of frequency points in 
parallel t [s] 

1 161 

2 136.5 

4 122.5 

8 119.5 

16 119.5 

24 117.5 

48 No sufficient RAM 

We can conclude that the multithreading efficiency is not 100% 
when a single frequency project is executed at such a large 
number of threads (48). However, even if the project needs to 
be run at as little as two frequency points, a much better 
efficiency is achieved (parallel run of two frequency point, each 
at 24 threads). The efficiency practically reaches 100% even with 
4 frequency points and remains perfect if the number of 
frequency points is further increased. The maximum efficiency 
should be reached when 48 frequency points are executed in 
parallel, each at single thread. However, such simulation could 
not be performed due to the RAM limitation. 

Efficiency of GPU Solver 

WIPL-D GPU Solver is an add-on tool that exploits high 
computation power of nVIDIA CUDA™-enabled GPUs to 
significantly decrease EM simulation time. Acceleration by an 
order of magnitude can be achieved when compared to a CPU 
multi-threaded solution. 

The sophisticated parallelization algorithm results in a highly 
efficient utilization of an arbitrary number of GPUs. Supported 
GPUs are nVIDIA’s CUDA-enabled GPUs (GeForce, Tesla or 
Quadro series) with compute capability 2.0 and higher. 

The greatest speed-up is achieved in the matrix inversion phase 
of simulation.  

GPU acceleration versus number of unknown coefficients is 
given for two hardware configurations: a desktop PC equipped 
with single GPU, and a server equipped with 4 GPUs. In all the 
simulations used for the following figures, CPU matrix fill-in is 
used.  



 

 

The graphs below illustrate the reduction of total simulation 
time, when GPU inversion replaces CPU inversion, on the 
configuration with 1 GPU. 

 
Figure 4. Improving the simulation times on standard 

desktop PC when the matrix inversion is done at single 
GPU card (nVIDIA GeForce GTX 1080) 

The desktop machine configuration is as follows: Intel® Core™ 
i7-7700 @ 3.60 GHz, 64 GB of RAM, one nVIDIA GeForce GTX 
1080 GPU. GPU acceleration increases with increasing number 
of unknown coefficients. For 80,000 unknowns, acceleration is 
~10 times. Number of unknowns where the GPU solution 
becomes faster than the CPU solution is ~5,500. Nevertheless, 
significant acceleration is not noticeable for less than 10,000 
unknowns. 

Simulation time (when CPU fill-in and GPU inversion are used) 
for a problem with 10,000 unknowns is 5 seconds, and for a 
problem with 80,000 unknowns it is 6.8 min. 

The simulation times for problems requiring over 80,000 
unknowns are less practical at standard desktop PC, even when 
equipped with a GPU card. Electrically larger problems are more 
efficiently solved at advanced hardware configurations, 
involving more CPU cores and multiple GPU cards. The server 
configuration is as follows: Intel Xeon CPU E5-2660 v2 @2.2 GHz 
(2 processors), 256 GB of RAM, four nVIDIA GeForce GTX 1080 
Ti GPUs and 7 SATA HDDs configured in RAID-0 configuration.  

GPU acceleration of total simulation time, for the problems with 
80,000 to 200,000 unknowns is shown in Figure 5. Acceleration 
increases with increase of the number of unknowns. 

An abrupt change in acceleration is achieved when the number 
of unknowns increases from 180,000 to 200,000. The reason for 
such a behavior is the switching of the matrix inversion to 
out-of-core. In the case of GPU Solver HDDs I/O operations are 
performed in parallel with GPU calculations, which provides 
additional acceleration when compared to CPU calculations. 

A problem with 100,000 unknowns is solved in 6.4 min, while 
the simulation time for 200,000 unknowns is 46.5 min. 

 
Figure 5. Improving the simulation times on the advanced 
hardware configuration when the matrix inversion is done 

at four GPU cards (nVIDIA GeForce GTX 1080)  

The next sections will focus on the application of highly efficient 
GPU solver for the two typical EM problems. 

Airplane Model 

The model of generic airplane (Fig. 6), is meshed in WIPL-D Pro 
CAD tool. The airplane was scaled in such a way to have 
approximately 20, 50, 100, 150 and 200 thousand of unknowns. 

 
Figure 6. Generic airplane model in WIPL-D Pro CAD. 

Fig 7 displays mesh of the generic airplane for 150,000 
unknowns.  



 

 

 
Figure 7. Meshed generic airplane for 150,000 unknowns.  

Regular Cubes Model 

Cubes presents one of the simplest and widely used canonical 
structures for EM simulation. All mesh elements are of square 
shape. 

Fig. 8 shows cubes for 20,000 unknowns. Models of 50, 100, 150 
and 200 thousand are obtained using copy manipulation. 

 
Figure 8. Cubes for 20,000 unknowns. 

Airplane and Cubes Simulations 

Machine used for simulations is 2xCPU Intel(R) Xeon(R) CPU 
E5-2650 v4 @ 2.20 GHz, 256 GB of RAM, 7 SATA hard disks 
connected in RAID-0 configuration, and 4xGPU GTX1080 TI.  

In order to take full advantage of WIPL-D high order basis 
functions (HOBFs), CPU parallelization is used for matrix fill-in 
and GPU solver for the matrix inversion. 

Simulation times of generic airplane and cube problem are listed 
in Table 2 and Table 3, respectively. The data from the tables 
were used to graphically present the ratio of the matrix fill-in and 
the matrix inversion time versus a number of unknowns. For the 
generic airplane, the ratios are presented in Fig. 9, and for the 
cubes, in Fig. 10. 

Table 2. Simulation times of generic airplane model. 

Number of 
Unknowns 

Fill-In Time on 
CPU [s] 

Inversion Time on 
GPU [s] 

Total 
Simulation 

Time [s] 

~20,000 9.4 (35%) 16.8 (63%) 26.9 

~50,000 25.6 (23%) 83.6 (75%) 111.1 

~100,000 92.0 (22%) 324.2 (77%) 421.6 

~150,000 199.2 (18%) 870.9 (81%) 1078.4 

~200,000 296.1 (10%) 2,526.0 (83%) 3,039.4 

Table 3. Simulation times of cube model.  

Number of 
Unknowns 

Fill-In Time on 
CPU [s] 

Inversion Time on 
GPU [s] 

Total 
Simulation 

Time [s] 

~20,000 4.0 (20%) 15.7 (78 %) 20.2 

~50,000 20.6 (17 %) 99.8 (82%) 122.0 

~100,000 69.5 (18%) 322.4 (81 %) 396.4 

~150,000 196.2 (14 %) 1,026.2 (75 %) 1,362.4 

~200,000 320.0 (10 %) 2,553.1 (83 %) 3,080.4 

  
Figure 9. Matrix fill-in – total simulation time ratio (red 
line) and matrix inversion – total simulation time ratio 

(blue line) for generic airplane.  



 

 

 
Figure 10. Matrix fill-in – total simulation time ratio (red 

line) and matrix inversion – total simulation time ratio 
(blue line) for cube models  

It can be concluded from the figures that for electrically large 
problems, above 50,000 of unknowns, the matrix inversion time 
requires 80-90% of the total simulation time. The total 
simulation time is most efficiently reduced by decreasing the 
most dominant component: the matrix inversion time. That is 
achieved by using an arbitrary number of GPU cards in the 
inversion process. 

For the simulation of generic airplane with 200,000 unknowns, 
as well as for the cubes with 150,000 and 200,000 unknowns, 
the solution is obtained by using the out-of-core solver. The 
simulation times are bolded in the tables.  

It is important to notice that the time required for a matrix 
inversion for the problem with ~150,000 unknowns, when it is 
performed in the in-core mode, and out-of-core mode are rather 
similar. The in-core computations are referred to the airplane 
model, requiring slightly less than 150,000 unknowns, while the 
out-of-core computations are referred to the cube model, which 
requires slightly more than 150,000 unknowns. In the case of 
out-of-core simulation the total simulation time has been 
increased mostly by the time used to write the matrix to a hard 
disk.  

While performing the matrix fill-in, the CPU usage is just under 
the 100%. However, during the matrix inversion stage CPU is 
used only to synchronize all data transfers between CPU RAM 
and GPUs VRAM, and CPU RAM and HDDs, and CPU usage is 
accordingly very low. 

Fig. 11 shows CPU usage during the simulation process, on the 
example of generic airplane model which requires 100,000 
unknowns. 

Conclusion 

Highly efficient CPU and GPU parallelization of WIPL-D 
numerical kernel is presented in the application note. The matrix 
fill-in process is fully CPU parallelized, while matrix inversion is 
fully GPU parallelized. Total simulation time decreases so that a 
problem with 200,000 unknowns can be simulated in less than 
one hour. 

 
Figure 11. CPU usage during the simulation of generic airplane problem with 100,000 unknowns.

 


